skip to main content


Search for: All records

Creators/Authors contains: "Lebo, Zachary J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Deep convective updraft invigoration via indirect effects of increased aerosol number concentration on cloud microphysics is frequently cited as a driver of correlations between aerosol and deep convection properties. Here, we critically evaluate the theoretical, modeling, and observational evidence for warm- and cold-phase invigoration pathways. Though warm-phase invigoration is plausible and theoretically supported via lowering of the supersaturation with increased cloud droplet concentration in polluted conditions, the significance of this effect depends on substantial supersaturation changes in real-world convective clouds that have not been observed. Much of the theoretical support for cold-phase invigoration depends on unrealistic assumptions of instantaneous freezing and unloading of condensate in growing, isolated updrafts. When applying more realistic assumptions, impacts on buoyancy from enhanced latent heating via fusion in polluted conditions are largely canceled by greater condensate loading. Many foundational observational studies supporting invigoration have several fundamental methodological flaws that render their findings incorrect or highly questionable. Thus, much of the evidence for invigoration has come from numerical modeling, but different models and setups have produced a vast range of results. Furthermore, modeled aerosol impacts on deep convection are rarely tested for robustness, and microphysical biases relative to observations persist, rendering many results unreliable for application to the real world. Without clear theoretical, modeling, or observational support, and given that enervation rather than invigoration may occur for some deep convective regimes and environments, it is entirely possible that the overall impact of cold-phase invigoration is negligible. Substantial mesoscale variability of dominant thermodynamic controls on convective updraft strength coupled with substantial updraft and aerosol variability in any given event are poorly quantified by observations and present further challenges to isolating aerosol effects. Observational isolation and quantification of convective invigoration by aerosols is also complicated by limitations of available cloud condensation nuclei and updraft speed proxies, aerosol correlations with meteorological conditions, and cloud impacts on aerosols. Furthermore, many cloud processes, such as entrainment and condensate fallout, modulate updraft strength and aerosol–cloud interactions, varying with cloud life cycle and organization, but these processes remain poorly characterized. Considering these challenges, recommendations for future observational and modeling research related to aerosol invigoration of deep convection are provided.

     
    more » « less
    Free, publicly-accessible full text available June 11, 2024
  2. Abstract

    Are the results of aerosol invigoration studies that neglect entrainment valid for diluted deep convective clouds? We address this question by applying an entraining parcel model to soundings from tropical and midlatitude convective environments, wherein pollution is assumed to increase parcel condensate retention. Invigoration of 5%–10% and <2% is possible in undiluted tropical and midlatitude parcels respectively when freezing is rapid. This occurs because the positive buoyancy contribution from freezing is larger than the negative buoyancy contribution from condensate loading, leading to positive net condensate contribution to buoyancy. However, aerosol‐induced weakening is more likely when realistic entrainment rates occur because water losses from entrainment more substantially reduce the latent heating relative to the loading contribution. This leads to larger net negative buoyancy contribution from condensates in polluted than in clean entraining parcels. Our results demonstrate that accounting for entrainment is critical in conceptual models of aerosol indirect effects in deep convection.

     
    more » « less
  3. null (Ed.)
    Abstract In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case. 
    more » « less
  4. null (Ed.)
    Abstract An engaged scholarship project called “Snowflake Selfies” was developed and implemented in an upper-level undergraduate course at The Pennsylvania State University (Penn State). During the project, students conducted research on snow using low-cost, low-tech instrumentation that may be readily implemented broadly and scaled as needed, particularly at institutions with limited resources. During intensive observing periods (IOPs), students measured snowfall accumulations, snow-to-liquid ratios, and took microscopic photographs of snow using their smartphones. These observations were placed in meteorological context using radar observations and thermodynamic soundings, helping to reinforce concepts from atmospheric thermodynamics, cloud physics, radar, and mesoscale meteorology courses. Students also prepared a term paper and presentation using their datasets/photographs to hone communication skills. Examples from IOPs are presented. The Snowflake Selfies project was well received by undergraduate students as part of the writing-intensive course at Penn State. Responses to survey questions highlight the project’s effectiveness at engaging students and increasing their enthusiasm for the semester-long project. The natural link to social media broadened engagement to the community level. Given the successes at Penn State, we encourage Snowflake Selfies or similar projects to be adapted or implemented at other institutions. 
    more » « less
  5. Abstract

    The accurate characterization of near-surface winds is critical to our understanding of past and modern climate. Dust lofted by these winds has the potential to modify surface and atmospheric conditions as well as ocean biogeochemistry. Stony deserts, low dust emitting regions today, represent expansive areas where variations in surficial geology through time may drastically impact near-surface conditions. Here we use the Weather Research and Forecasting (WRF) model over the western Gobi Desert to demonstrate a previously undocumented process between wind-driven landscape evolution and boundary layer conditions. Our results show that altered surficial thermal properties through winnowing of fine-grained sediments and formation of low-albedo gravel-mantled surfaces leads to an increase in near-surface winds by up to 25%; paradoxically, wind erosion results in faster winds regionally. This wind-albedo-wind feedback also leads to an increase in the frequency of hours spent at higher wind speeds, which has implications for dust emission potential.

     
    more » « less
  6. Abstract

    Shortwave (SW) cloud feedback (SWFB) is the primary driver of uncertainty in the effective climate sensitivity (ECS) predicted by global climate models (GCMs). ECS for several GCMs participating in the sixth assessment report exceed 5K, above the fifth assessment report “likely” maximum (4.5K) due to extratropical SWFB's that are more positive than those simulated in the previous generation of GCMs. Here we show that across 57 GCMs Southern Ocean SWFBcan be predicted from the sensitivity of column‐integrated liquid water mass (LWP) to moisture convergence and to surface temperature. The response of LWP to moisture convergence and the response of albedo to LWP anti‐correlate across GCMs. This is because GCMs that simulate a larger response of LWP to moisture convergence tend to have higher mean‐state LWPs, which reduces the impact of additional LWP on albedo. Observational constraints suggest a modestly negative Southern Ocean SWFB— inconsistent with extreme ECS.

     
    more » « less
  7. Hail-bearing storms produce substantial socioeconomic impacts each year, yet challenges remain in forecasting the type of hail threat supported by a given environment and in using radar to estimate hail sizes more accurately. One class of hail threat is storms producing large accumulations of small hail (SPLASH). This paper presents an analysis of the environments and polarimetric radar characteristics of such storms. Thirteen SPLASH events were selected to encompass a broad range of geographic regions and times of year. Rapid Refresh model output was used to characterize the mesoscale environments associated with each case. This analysis reveals that a range of environments can support SPLASH cases; however, some commonalities included large precipitable water (exceeding that day’s climatological 90th-percentile values), CAPE < 2500 J kg−1, weak storm-relative wind speeds (<10 m s−1) in the lowest few kilometers of the troposphere, and a weak component of the storm-relative flow orthogonal to the 0–6-km shear vector. Most of the storms were weak supercells that featured distinctive S-band radar signatures, including compact (<200 km2) regions of reflectivity factor > 60 dB Z, significant differential attenuation evident as negative differential reflectivity extending downrange of the hail core, and anomalously large specific differential phase KDP. The KDPvalues often approached or exceeded the operational color scale’s upper limit (10.7° km−1); reprocessing the level-II data revealed KDP>17° km−1, the highest documented in precipitation at S band. Electromagnetic scattering calculations using the T-matrix method confirm that large quantities of small melting hail mixed with heavy rain can plausibly explain the observed radar signatures.

     
    more » « less
  8. Abstract

    Dust plays an important role in climate, and while our current representation of dust production includes shifts in vegetation, soil moisture, and ice cover, it does not account for the role of landscape evolution. Here, we use the Weather Research and Forecasting model coupled to an aerosol chemistry model to quantify the effects of arid landscape evolution on boundary layer conditions, dust production, and radiative properties in the Hami Basin, China, a dynamic stony desert in eastern Asia. Relative to today, altered surface roughness, sediment erodibility, and albedo combine to produce up to a ~44% increase in wind speeds (mean ≈ 15%), up to a ~59% increase in dust loading (mean ≈ 30%), and up to a ~4.4 W m−2increase in downwelling radiation (mean ≈ 2.4 W m−2) over the Hami Basin. Our modeling results, along with geomorphological data for the western Gobi Desert, provide evidence that stony deserts acted as important Plio‐Pleistocene dust sources.

     
    more » « less